标签: 全文翻译

656 0

[翻译] A Discriminative Feature Learning Approach for Deep Face Recognition

深度人脸识别的判别特征学习方法Center Loss一、介绍对于人脸识别任务,深度学习特征需要可分离性和有辨别度。因为在训练阶段无法收集到所有可能的测试样本,CNN预测的样本标签不能总是适用。深度学习特征需要有足够的具有辨别力和概括性,以便在没有预测标签的情况下区分未见过的类别。判别特征可以通过最近邻(NN)或k-最近邻(k-NN)这类不需要预测标签的算法分好类。然而softmax只鼓励特征...
- 阅读全文 -
606 0

[翻译] Beyond Part Models: Person Retrieval with Refined Part Pooling

原文链接这是一篇可在图像领域通用的小trick,同时也是一种细粒度算法的设计。摘要使用基于人体局部图像的特征对行人图像进行描述为任务提供了细粒度的信息,并且在最近的文献中已被证实对于行人重识别是有益的。发现局部细粒度特征的先决条件是每个局部都应该被准确的定位。本文不使用额外标注(例如姿势估计)来直接定位局部位置,而是强调每个局部位置的内容一致性。具体来说,我们的目标是学习用于人物检索的区别性...
- 阅读全文 -
1006 0
[翻译] RetinaNet: Focal Loss for Dense Object Detection

[翻译] RetinaNet: Focal Loss for Dense Object Detection

摘要迄今为止最高精度的物体检测器是由两级组成的检测器,典型代表是R-CNN,其中R-CNN的分类器被应用于有很少元素的预选框集。相反,一级检测器被更加广泛地使用,密集的区域预选使网络有可能变得更快更简单,但到目前为止,其检测的准确性仍落后于两级检测器。在本文中,我们讨论了为什么会出现这样的情况。我们发现在训练密集检测器的过程中遇到的极端的前景 - 背景类不平衡是造成一级检测器准确性较差的主要...
- 阅读全文 -